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THE RESPONSE OF AND SOUND POWER
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The dynamic response of a clamped vibrating rectangular plate excited by steady-state
harmonic point forces, couples and piezomoments are derived, based on a new method.
This method eliminates the difficulties involved in solving high order simultaneous
equations/matrices and provides an easier approach to calculating the structurally radiated
sound. Point force and piezomoment inputs are experimentally applied by using
electromagnetic shaker and piezoceramic excitors attached to the surface of the plate. The
coupling effect due to the bounding layer between the plate and the piezoceramic actuators
is also determined. The sound radiation measurement is conducted in a reverberant room
equipped with an anechoic chamber. Results from these experiments indicate that the
proposed method provides an accurate and efficient approach for theoretical estimation of
the response of clamped rectangular plates and the structurally radiated sound power.
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1. INTRODUCTION

Sound radiation emitted by a vibrating plate is encountered very often. The sound power
radiated by such a plate can be calculated if its surface response is known. A number of
studies have been devoted to the derivation of plate response with various boundary
conditions. For simply supported plates the solution is easier to obtain [1]. However, for
a plate which is not simply supported, e.g., clamped–clamped, clamped–elastically
supported and clamped–simply supported etc., the solution becomes much more complex.
Both the methods, viz., Ritz [2] and superposition [3], which are widely used, have to solve
high order simultaneous equations or high order matrices, making the calculations of
structurally radiated sound power even more difficult. Based on Galerkin’s method, Vlasov
proposed a solution [4] in 1949 for clamped or simply supported rectangular plates under
static load. In the present work, the dynamic response of a clamped or elastically supported
plate subjected to various excitations, e.g., piezoactuators, is calculated. The Rayleigh
integral expression [5] has been employed to obtain the sound pressure distribution and
radiated sound power. Optimized control forces for minimization or radiated sound are
easier to achieve by the present approach.

A 40 cm×40 cm clamped steel plate with a 2 mm thickness was used for the experiment.
The response of the plate was measured by using an electromagnatic shaker and
piezoceramic excitors. The weight of the piezoceramic actuators which were bonded
directly to the plate surface, can be neglected compared to the weight of the steel plate
[6–8]. The linearity of the piezoceramic excitors and the bonding layer was experimentally
verified for the range of testing frequencies. The radiated sound power measurement was
conducted in the reverberant room equipped with an anechoic chamber to simulate the
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Figure 1. Co-ordinate system of the plate.

T 1

Comparisons between the natural frequencies of the clamped plate bonded by four
piezoceramic patches

Natural frequencies (Hz)
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

experimental measurements error between
for plate bonded by four column (2) and

Mode Rayleigh-Ritz present PZT patches (3) (%)

1 106·88 107·24 106 1·2
2 217·98 219·20 214·45 2·2
3 321·42 324·29 319 1·7
4 390·81 396·37 389 1·9
5 392·66 396·37 390·8 1·4
6 490·07 502·13 489 2·7

semi-infinite free space. The results for the calculated and measured sound power was
observed to match perfectly after the acoustic absorbing condition for the opening of the
anechoic chamber was improved. This indicates that the present method can be
successfully used to predict the plate response and radiated sound power.

2. SOLUTION FOR FORCED VIBRATIONS OF A CLAMPED PLATE

For an undamped thin plate under the external excitation force Pe (x, y, t), shown in
Figure 1, the governing equation of bending vibrations is

D0 14

1x4 +2
14

1x2 1y2 +
14

1y41w(x, y, t)+ rsh
12w(x, y, t)

1t2 = pe (x, y, t), (1)

where w(x, y, t) is the displacement along z direction at the point (x, y),

Figure 2. Plate under the excitation by (a) single concentrated moment (b) two concentrated forces to simulate
single concentrated moment.
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Figure 3. Plate under the excitation by four concentrated moments simulating a piezo actuator.

D=Eh3/12(1− n2), E is Young’s modulus, h is the plate thickness, n is Poisson’s ratio and
r is the density of the plate.

Consider the external force Pe to be a harmonic point force with frequency v acting on
the point (j, h), along the positive z-axis and let

w(x, y, t)=W(x, y) eivt, pe (x, y, t)=P(x, y) eivt. (2)

Substituting equation (2) into equation (1), the governing equation can be simplified as

D0 14

1x4 +2
14

1x2 1y2 +
14

1y41W(x, y)− m̄v2W(x, y)−P(x, y)=0, (3)

where m̄= rsh is the area density of the plate.
Expanding W(x, y) and P(x, y) as the superposition of adequate shape functions, one

obtains

W(x, y)= s
a

m=1

s
a

n=1

Wmnfmn (x, y), P(x, y)= s
a

m=1

s
a

n=1

Pmncmn (x, y). (4a, b)

The Virtual Work Principle is given as

g
b

0 g
a

0

[D9292W(x, y)− m̄v2W(x, y)−P(x, y)](dW) dx dy=0, (5)

where the virtual displacement dW is written as

dW= s
a

i=1

s
a

k=1

dWikfik (x, y), and 9292 =
14

1x4 +2
14

1x2 1y2 +
14

1y4.

Figure 4. Integration areas S1 and S2 for the calculation of sound power radiated by plate.
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Figure 5. Integration areas for sound power for S1 =S2.

The shape functions in equation (4) can be further decomposed as

fmn (x, y)=cmn (x, y)=Xm (x)Yn (y) (6)

Eigenfunctions Xm (x) and Yn (y) have been chosen such that both of them satisfy the
boundary conditions for the plate. Equation (4b) then becomes the Fourier series
expansion of P(x, y) and Pmn can be expressed as

Pmn =g
b

0 g
a

0

P(x, y)Xm (x)Yn (y) dx dy>g
b

0 g
a

0

X2
m (x)Y2

n (y) dx dy. (7)

Substituting equation (4a) and (4b) into equation (5), one obtains

D s
a

m

i

s
a

n

k

Wmn g
b

0 g
a

0

fik9
292fmn dx dy− m̄v2 s

a

m

i

s
a

n

k

Wmn g
b

0 g
a

0

fikfmn dx dy

− s
a

m

i

s
a

n

k

Pmn g
b

0 g
a

0

fikcmn dx dy=0. (8)

Using equation (6), equation (8) can be converted into

D s
m

i

s
n

k

Wmn g
b

0 g
a

0

[X(4)
m YnXiYk +2X0mY0n XiYk +Y(4)

n XmXiYk ] dx dy

− m̄v2 s
m

i

s
n

k

Wmn g
b

0 g
a

0

XmYnXiYk dx dy

= s
a

m

i

s
a

n

k

g
b

0 g
a

0

P(x, y)Xm (x)Yn (y) dx dy

g
b

0 g
a

0

X2
m (x)Y2

n (y) dx dy
g

b

0 g
a

0

XmYnXiYk dx dy. (9)
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The eigenfunctions Xm (x), Yn (y) and Xi (x), Yk (y) are, respectively, orthogonal to each
other such that

g
a

0

Xp (x)Xq (x) dx=g
a

0

X0p (x)X0q (x) dx=0

g
b

0

Yp (y)Yq (y) dy=g
b

0

Y0p (y)Y0q (y) dy=0

h
G

G

G

G

J

j

, if p$ q.

Equation (9) can now be simplified as

D s
m

s
n

Wmn (I1I2 +2I3I4 + I5I6)− m̄v̄2 s
m

s
n

WmnI2I6 = s
m

s
n g

b

0 g
a

0

P(x, y)XmYn dx dy,

(10)

where,

I1 =g
a

0

X(4)
m Xm dx, I4 =g

b

0

Y0n Yn dy, I2 =g
b

0

Y2
n dy,

I5 =g
b

0

Y(4)
n Yn dy, I3 =g

a

0

X0mXm dx, I6 =g
a

0

X2
m dx.

Therefore,

Wmn =g
b

0 g
a

0

P(x, y)XmYn dx dy>(D(I1I2 +2I3I4 + I5I6)− m̄v2I2I6). (11)

For a concentrated load, P(x, y)=P d(x− j) d(y− h), then

Wmn =PXm (j)Yn (h)/D(I1I2 +2I3I4 + I5I6)− m̄v2I2I6). (11a)

The dynamic response W(x, y) of the plate subjected to a harmonic point force can thus
be expressed as

W(x, y)= s
a

m

s
a

n

PXm (j)Yn (h)
D(I1I2 +2I3I4 + I5I6)− m̄v2I2I6)

Xm (x)Yn (y). (12)

The shape functions Xm (x) and Yn (y) can be arbitrarily chosen as long as they are
quasi-orthogonal and satisfy the boundary conditions. Consider a beam of length l, the
equation of motion can be written as

EI 14w(x, y)/1x4 +m 12w(x, t)/1t2 =0, (13)

where EI and m are the flexural rigidity and mass per unit length respectively. Let
w(x, t)=X(x) sin (vt), and substituting this into equation (13) one obtains

Xm (x)=C1 sin
lmx
1

+C2 cos
lmx
1

+C3 sinh
lmx
1

+C4 cosh
lmx
1

, (14)

where C1, C2, C3 and C4 are determined by the boundary conditions and lm is the eigenvalue
of the mth mode. The selection of Yn (y) is the same as that for Xm (x).
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The normal velocity at the surface point (x, y) is obtained as

v(x, y, t)= 1w(x, y, t)/1t=ivW(x, y) eivt =vW(x, y) ei(vt+ p/2),

which can be rewritten as

v(x, y, t)=V(x, y) ei(vt+ p/2), (15)

where V(x, y) is the magnitude of v(x, y, t).
Using equation (11), the natural frequencies vmn can be found by allowing the

denominator of

Wmn =g
b

0 g
a

0

P(x, y)XmYn dx dy>(D(I1I2 +2I3I4 + I5I6)− m̄v2I2I6)

to be zero. Thus,

vmn =zD(I1I2 +2I3I4 + I5I6)/m̄I2I6 (16)

In order to verify equation (16), two cases are evaluated and compared:

1. Choosing eigenfunctions for simply supported boundaries [9]

Xm (x)= sin (mpx/a), Yn (y)= sin (npy/b)

and substituting into equation (16), the natural frequencies are obtained as

vmn = p2(m2/a2 + n2/b2)zD/m̄. (17)

These results are identical to those shown in [2].
2. Choosing eigenfunctions for a beam clamped on both ends [9] and calculating the

natural frequencies for clamped plates.

Xm (x)= J(lmx/a)− [J(lm )/H(lm )]H(lmx/a)

and

Yn (y)= J(lny/b)− [J(ln )/H(ln )]H(lny/b)

where
J(u)= cosh (u)− cos (u)
H(u)= sinh (u)− sin (u)

and lm and ln satisfy cosh (l) cos (l)=1. The results obtained by substituting Xm (x)
and Yn (y) into equation (16) are compared with the results reported in reference 13 in
Table 1.

A point moment can be treated as two point forces with the same magnitude but
separated by a distance Dj and oriented along opposite direction with respect to each other
[2]. Consider a point moment M acting on the plate at point (j, h), as shown in Figure
2(a), then M can be represented as

M=M d(x− j)d(y− h) eivt, (19)

where M is the magnitude of M and delta function d is defined as

d(x− j)=61,
0,

x= j,
x$ j.
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When a point moment M is substituted by a couple and letting M=P(Dj), the total
response of the plate will be the superposition of the responses induced by the two point
forces;

W(x, y)=P$limDj:0
f(j+Dj, h, x, y)− f(j, h, x, y)%, (20)

where f(j, h) and f(j+Dj, h) represent the responses induced by the two unit point forces
located at (j, h) and (j+Dj, h) respectively.

Let Dj approach zero and keep M=P(Dj) constant, then P approaches infinity. Then
equation (20) becomes

W(x, y)=M$limDj:0
[ f (j+Dj, h, x, y)− f(j, h, x, y)]/Dj%. (21)

Using equation (21), equation (12) can be written as

W(x, y)= s
m

s
n $ MXm (x)Yn (y)Yn (h)

D(I1I2 +2I3I4 + I5I6)− m̄v2I2I6

1Xm (j)
1j %. (22)

Equation (22) represents the response of the plate to excitation by the point moment acting
along the negative y direction. Similarly, when the moment is applied along the x direction,
the plate response is obtained as

W(x, y)= s
m

s
n $ MXm (x)Yn (y)Xm (j)

D(I1I2 +2I3I4 + I5I6)− m̄v2I2I6

1Yn (h)
1h %. (23)

Consider a piezoceramic actuator perfectly bonded on the plate. When an alternating
electric field is applied on the piezoceramic actuator along the z direction, the induced
strain along the x and y directions will cause the plate to vibrate. This excitation can be
treated as four point moments concentrated on the midpoint of four edges of the
piezoceramic actuator (Figure 3(a)). The piezoceramic actuator is a square patch with each
side of length l.

From equation (22) and equation (23), and by considering the plate response induced
by the piezoceramic actuator to be the superposition of the responses induced by four point
moments, one gets

W(x, y)= s
m

s
n

MXm (x)Yn (y)
D(I1I2 +2I3I4 + I5I6)− m̄v2I2I6 &Yn (h)

1Xm (j)
1j nj= j0 −

1

2
h= h0

−Yn (h)
1Xm (j)

1j nj= j0 +
1

2
h= h0

+Xm (j)
1Yn (h)

1h nj= j0
h= h0 −

1

2

−Xm (j)
1Yn (h)

1h nj= j0
h= h0 +

1

2

'. (24)

The bonding layer between the piezoceramic patch and the plate is assumed to be linear.
The relation between the piezomoment M and the applied voltage oPZT , according to
equations (19) and (24), is then assumed to be

M= k0oPZT . (25)
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3. CALCULATION OF THE SOUND POWER RADIATED BY THE PLATE

During the vibration of the plate, the normal velocity of the acoustic medium on the
surface of the plate loaded at r� 1 has to be equal to the normal velocity of the plate v(r� 1)
in order to satisfy the requirement of continuity as shown in Figure 4. Due to the acoustic
perturbation on the surface of the plate, the acoustic pressure P(r� 2) at r� 2 is created and
can be obtained by Rayleigh’s integral [5]

P(r� 2)=
vrf

2p gS1

v(r� 1)
e−ikR

R
dS1, (26)

where v is the angular frequency of the plate, k is the wave number, rf is the density of
air, R is the distance between points r� 1 and r� 2, i.e., R= =r� 1 − r� 2=, and S1 is the area of the
plate.

The acoustic intensity I(r� 2) at r� 2 can be expressed as,

I(r� 2)= 1
2Re {P(r� 2)v*(r� 2)}, (27)

where v(r� 2) is the normal velocity of the acoustic medium at r� 2 and * denotes its complex
conjugate.

The sound power WP radiated into the semi-infinite space above the plate is

Wp =gS2

I(r� 2) dS2, (28)

when S2 is an arbitrary surface which covers area S1 and r� 2 is the position vector of S2 (see
Figure 4).

Substituting equations (26) and (27) into equation (28) and allowing S2 =S1, then r� 1 and
r� 2 would represent any two arbitrary position vectors on the surface of the plate (see Figure
5). The power radiated by the plate can then be expressed as

WP =
vrf

4p gS2
gS1

Re 6v(r� 1) · 0i e−ikR

R 1 · v*(r� 2)7 dS1 dS2, (29)

where S1 and S2 are areas on the x-y plane with 0Q xQ a and 0Q yQ b.

Figure 6. Discretization of plate area.
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Figure 7. Setup of clamped square plate and the positions of four bonded piezoceramics (piezoceramics on
the back of the plate have been shown by dotted lines).

For an arbitrary complex function C, the relation Re{C}=C+C*/2 is always valid.
Therefore equation (29) can be expanded as,

Re 6v(r� 1) · 0i e−ikR

R 1 · v*(r� 2)7=
1
2 6$v(r� 1) · 0i e−ikR

R 1 · v*(r� 2)%
+$v*(r� 1) · 0−i e−ikR

R 1 · v(r� 2)%7
=

1
2 6$v(r� 1) · 0sin u+i cos u

R 1 · v*(r� 2)%
+$v*(r� 1) · 0sin u−i cos u

R 1 · v(r� 2)%7. (30)

Due to the reciprocity relation between source at r� 1 and receiver at r� 2, equation (30) can
be simplified as

Re 6v(r� 1) · 0i e−ikR

R 1 · v*(r� 2)7= v(r� 1) · 0sin (kR)
R 1 · v*(r� 2) (31)

and thus equation (29) becomes

WP =
vrf

4p g
b

0 g
a

0 $g
b

0 g
a

0

v(r� 1) · 0sin (kR)
R 1 · v*(r� 2) dx1 dy1% dx2 dy2. (32)

Consider the rectangular plate to be divided into N elements and the area of each element
to be DS (See Figure 6), equation (32) can then be approximated as a finite series

WP 3vrf

4p
s
J

s
I

sin (kR)
R

v(r� 1) · v*(r� J )(DS) · (DS), (33)

where r� I and r� J are the position vectors of the center point of two arbitrary elements, and
R= =r� I − r� J=.
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Figure 8. The experimental setup for the measurement of plate response.

Figure 9. The experimental setup for the measurement of plate radiation power in a reverberant room with
an anechoic chamber.

4. MEASUREMENTS OF SOUND POWER RADIATED BY A PLATE IN A
REVERBERANT ROOM

The measurements were performed on a 40 cm×40 cm×2 mm thick rectangular steel
plate. The boundary was a rectangular steel frame. The plate was clamped onto the frame
by four 2 cm thick steel bars with screws every 5 cm apart (Figure 7). The total weight
of the frame along with 4 bars was 40 kg.

Piezoceramic patches 1 and 2 were bonded on the upper surface at locations (8·7, 11·5)
cm, (11·3, 31) cm, respectively, whereas piezoceramic patches 3 and 4 are bonded on the
lower surface at locations (13·8, 11) cm, (26·4, 26·1) cm, respectively. Each piezoceramic
patch was 25 mm×25 mm×1 mm and weighed 6·3 g. For measuring the plate responses,
one of the piezoceramic patches was used as an actuator to excite the plate and an
accelerometer (B&K 4393), weighing 2·2 g, was used as an acceleration sensor. Figure 8
shows the experimental setup.

T 2

The fundamental data for reverberant room

Reverberant time (s)
Reverberant Inner surface ZXXXXXXXXCXXXXXXXXV

room Volume (m3) area (m2) 200 Hz 315 Hz 400 Hz 500 Hz

– 205·6 216·8 14·6 14·2 12·6 11·6
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Figure 10. The proportionality between plate velocity amplitude and the piezoactuator excitation voltage oPZT .
Key for actuator location (x, y) for various frequencies (Hz). (12, 14·6): —w—, 214·45; —×—, 319; —+—,
389; —e—, 489. (5·8, 26·7) —E—, 214·45; —*—, 319; ———————, 389; —q. —, 489. (32·1, 27·4); · ·r· · , 214·45;
· ·W· · , 319; · ·e· · , 389; —r—, 489.

In the previous calculations of sound radiation power, only the upper semi-finite
space has been taken into consideration. The arrangement, shown in Figure 7, was
hence baffled and placed at the opening of the anechoic chamber (Figure 9). The
power radiated from the back of the plate can be completely absorbed by such an
arrangement. In the first part of the measurements, the original baffle of the plate on
the opening of the anechoic chamber was 0·8 cm thick plywood. In the second part
of the measurements, the original baffle was replaced by 2 cm thick plywood in
order to prevent the part of sound power from penetrating into the anechoic chamber
from the reverberant room. All the gaps were well sealed by acoustic absorbing
material.

The measurements of the radiation power, following ANSI-S1.21-1972 [10]
specifications, were conducted by placing the anechoic chamber in the reverberant room.

T 3

Coupling coefficient k0 for the piezoceramics for various frequencies

1 2 3 4 5
Mode (frequency) (106) (214·45) (319) (389) (489)

Coupling coefficient k0 7·199 30·31 35·99 28·75 27·56
(Nt-m/volt)*10−4



.-.   . . 312

After measuring the pressure level Li for all the required positions in ANSI, the average
sound pressure level Lp was calculated as

Lp =10 log $ 1
Nm

s
Nm

i=1

log−1 0Li

101%. (34)

From equation (34) the sound power level LW was then obtained as

LW =Lp −10 log (T)+ log (Vr )+10 log (1+Srl/8Vr )+10 log (B/1000)−14, (35)

where Vr is the volume of reverberant room, Nm is the number of microphones, Sr is the
total area of the inside surface of the reverberant room, T is the echo time, l is the
wavelength, and B is the atmospheric pressure (mb). According to ANSI, the reference
pressure level and sound power are 20 mN/m2 and 10−12 Watt respectively. The
fundamental data of the reverberant room is given in Table 2 [11].

5. RESULTS AND COMPARISONS

The calculated and measured resonant frequencies for the first six modes are listed in
Table 1. The accuracy of the present method was shown by comparison with the results
obtained by the Rayleigh–Ritz method. It can be easily seen that the present method offers
a much more simplified approach to obtaining the response of a rectangular plate under
a variety of boundary conditions. Moreover, the comparison also shows that the fixed
boundary in the experimental setup is close to ideal and the influence of the attached
piezoceramic patches is almost negligible.

From equations (24) and (25) is can be observed that the plate displacement W(x, y)
is proportional to the applied moment M. That is

W(x, y)=MG(j0, h0, x, y). (36)

Substituting equation (36) into equation (15) the relation velocity and input moment can
be obtained as

V(x, y)=vMG(j0, h0, x, y). (37)

Equation (37) indicates that the velocity amplitude is proportional to the moment M.
In order to verify the proportionality between M and oPZT , 25, 50, 75 and 100 V harmonic

voltages were applied to piezoceramic 1 successively. The velocity amplitudes at three
different points A(12, 14·6) cm, B(5·8, 26·7) cm and C(32·1, 27·4), cm were measured and
are plotted in Figure 10. It can be seen from Figure 10 that such proportionality indeed
exists for each individual mode, confirming the validity of the relation M= k0oPZT . The
coupling coefficient k0 can thus be determined by comparing equation (37) and the
measurement results. Equation (38) gives the coupling coefficient k0 by setting the
harmonic exciting voltage for the piezoceramic 1 to 141·4 V:

k0 =V2/141·4×V1. (38)

Table 3 gives the coupling coefficient k0 for the first five modes.
From equation (24) the mode shapes are calculated by using 20×20 terms.

Piezoceramic 1 is used as actuator and the excitation moment is M=1 nt−m (Figure 11).
The pictures for these corresponding mode shapes are taken by spreading sand on the
surface of the vibrating plate. The lines in Figure 12 are the nodal lines corresponding to
each mode. For comparison, the vibration amplitudes are also measured by using the
accelerometer on the plate and the results are shown in Figure 13.
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Figure 11. Simulation of plate responses (m/s) under excitation by piezoceramic 1. (a) first mode (106 Hz);
(b) second mode (214·45 Hz); (c) third mode (319 Hz); (d) fourth mode (389 Hz); (e) fifth mode (390·8 Hz); (f)
sixth mode (489 Hz).

The plate was divided into 20×20 elements for the calculation of the radiated sound
power. The results of calculated and measured radiated sound power are given in Table
4. The analytical results are obtained by using equation (33), considering 141·4 V harmonic
as exciting voltage for piezoceramic 1.
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Figure 12. Picture of plate responses (m/sec) under excitation by piezoceramic 1. (a) second mode (214·45 Hz);
(b) third mode (319 Hz); (c) fourth mode (389 Hz); (d) fifth mode (390·8 Hz); (e) sixth mode (489 Hz).
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Figure 13. Experimental measurements of plate responses (m/s) under excitation by piezoceramic 1 with
excitation voltage oPZT =141·4 V. (a) first mode (106 Hz); (b) second mode (214·45 Hz); (c) third mode (319 Hz);
(d) fourth mode (389 Hz); (e) fifth mode (489 Hz).
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T 4

Comparison between the calculated and measured sound power radiated by the plate

Actuator Sound power (dB)
ZXXCXXV ZXXXXXXXXXXCXXXXXXXXXXV

measured measured
Mode (frequencies) oPZT Me calculated (original baffle) (improved baffle)

2 (214·5) 141·4 0·429 90·4 86·2 88·6
3 (319) 141·4 0·509 91·5 82·4 85·8
4 (389) 141·4 0·406 107·5 92·4 100·7
6 (489) 141·4 0·389 104·9 94·3 98·3

6. DISCUSSION AND CONCLUSION

A novel method for the analysis of the plate response with clamped boundary condition
and plate radiated sound power has been presented. The response and radiated sound
power of a plate subjected to four point moments excitation which simulates a
piezoceramic actuator has been obtained by this method and compared with the
experimental results in order to confirm the accuracy of the results. Measurement of
radiated sound power in the reverberant room with an anechoic chamber is also shown
to be an alternative and economic approach.

The possible reasons responsible for the minor deviations between the calculated and
measured radiated sound power may be listed as follows:

1. For the monotonous frequencies below 500 Hz the sound field does not have perfectly
uniform distribution in the reverberant room due to the lack of a diffuser.

2. The reverberant environment gets slightly distorted due to the existence of the
anechoic chamber in the reverberant room.

3. The baffle on the opening of the anechoic chamber is not perfect for frequencies below
a few hundred Hz. A part of the radiated sound power may hence get transmitted
through the baffle and is absorbed by the anechoic chamber, thus lowering the
measured value. It may be noted that the accuracy of the measurement was observed
to increase after the baffle was improved.

Furthermore, the model presented in this paper is particularly convenient when active
control of plate response, sound radiation and sound transmission are desired, since all
the information, e.g., the dynamics of the structure, required for the control can be
obtained and is present in the structure, i.e., the plate, itself.
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